
Towards Semantic Interoperability in WoT
Ecosystems?

Andrea Cimmino, Maŕıa Poveda-Villalón, and Raúl Garćıa-Castro

1 Universidad Politécnica de Madrid, Madrid, Spain
2 {cimmino,mpoveda,rgarcia}@fi.upm.es

1 Introduction

IoT infrastructures available on the Web has grown in the last decade. However,
the data related to these infrastructures is usually published using heterogeneous
formats and models, which hinders their discovery and consumption. This makes
interoperability (bringing transparent discovery and access for data from those
IoT infrastructures) a must for the future Web of Things landscape.

In this paper we present an approach to bring interoperability to IoT infras-
tructures available on the Web. We split the problem in two parts, the former
addresses how to describe the contextual data of such infrastructures, and the
latter how to fetch their data, translate it into RDF on the fly and, finally, merge
both contextual and captured data providing an unified view.

To describe the contextual data we took the Thing Description model de-
fined in the W3C WoT WG as starting point, which is represented in the WoT
ontology. Then, we built around several ontologies to exploit and extend WoT
capabilities creating an ontology network3. Infrastructures tend to publish their
captured data in JSON following different models by means of REST APIs. We
devised the WoT Mappings ontology and a software that allows to specify how
to translate any JSON document into an RDF document on the fly, and also
combines such translation of the captured data with the contextual one.

We implemented this interoperability approach in the VICINITY H2020
project. In this platform users register their infrastructures, specifying their con-
textual data, e.g., type of sensors, building where they might be located, sensor’s
owner; and the web endpoint where the captured data of such sensors is avail-
able. Once registered, our approach provides the capability to look for suitable
devices that meet the requirements of a SPARQL query, and the capability to
transparently access these devices by using that same query.

VICINTIY counts with several use-case pilots from different domains such as
energy, transport, or health among others. For instance, the health pilot consists
of a large number of sensors installed at the homes of elders, which expose data
to provide assisted living, and allow to monitor their health providing direct
communication, assistant, and direct intervention in case of an emergency.

? This article was written in the context of the European project VICINITY, and
thus, has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement no. 688467.

3 The VICINITY ontologies are available at http://vicinity.iot.linkeddata.es

2 Cimmino et al.

2 Ontologies

The Web of Things (WoT) ontology has been developed to define “what”,
“where” and “how” things can be discovered or accessed in the Web of Things.
In this sense, the shared conceptualization to be represented in this ontology is
the domain of the Web of Things, that is, it will describe the virtual counterpart
of physical objects according to the Web of Things Thing Description model.

The main concepts defined in the ontology are wot:Thing, wot:Interaction-
Pattern, wot:DataSchema and wot:Link. A particular thing is linked to its inter-
action patterns by means of the object property wot:providesInteractionPattern.
An interaction pattern can be a property represented by the concept wot:Property,
an action by wot:Action, or an event by wot:Event.

Not all thing attributes can be expressed in a static and shareable description
because some may be dynamic, protected, or both. For instance, the geo-location
of a physical thing can be considered sensitive and only be obtained under spe-
cific security and privacy constraints, through its endpoints. Besides, its value
may dynamically change if the thing changes its position. Therefore, if this re-
quirement is not considered, the location-based discovery will not be feasible.

A solution to this involves describing as well how data provided by secured
endpoints map to specific thing attributes. By following this approach, descrip-
tions might inform on how to automatically and securely retrieve and map their
own missing attribute values, by means of what it is called access mappings.

The adoption of access mappings in the data model leads to a wider scope
solution: to gather values for any kind of thing attributes from its own web inter-
faces, significantly extending the support to interoperability in the IoT ecosys-
tem. In order to achieve this, data models for web things should also support
describing the exchanged data with the mentioned links or endpoints, i.e., they
should not just describe its format but also its content. Thus, rather than ex-
pecting to receive data from endpoints in a specific syntax, descriptions would
inform consumers on how to process responses and extract useful information.

This approach for semantic discovery focuses on the WoT Mappings on-
tology which represents the mechanisms for accessing the values provided by
web things. In this sense, it is needed to represent the mappings between the
values provided under a given endpoint (for example in JSON format) to com-
mon semantic vocabularies. The main concepts defined in such ontology are
map:Mapping and map:AccessMapping. The former corresponds to the mapping
concept above-defined allowing the connection between a key provided within
structured data in an on-line resource, represented by the datatype property
map:key, to the RDF property to which it should be mapped to, represented by
the object property map:predicate.

The VICINITY Core ontology aims at modelling the information needed
to exchange IoT descriptor data between peers through the VICINITY platform.
The current conceptual model defined by the Core ontology introduces some
new concepts closely related to the WoT domain, namely: Thing Ecosystem
(the collection of things that co-exist in a given environment), Thing Ecosystem

Towards Semantic Interoperability in WoT Ecosystems 3

Description (a digital representation that encapsulates an ecosystem), Device
(defined according to the ISO/IEC Reference Architecture as a digital entity
which bridges between real-world physical entities and the other digital entities
by interacting with other entities through one or more endpoints), or Service
(defined according to the ISO/IEC Reference Architecture as a set of distinct
capabilities provided by a software component through a defined interface).

Apart from these main terms that have been defined for the particular case
of the VICINITY platform, there are other concepts that complement the WoT
ontology and that support the alignment with the ISO/IEC RA; namely, neigh-
bourhood, sensor, actuator, relative endpoint or value.

Another example of specialisation is the case of core:RelativeEndpoint which
extends the definition of the wot:Link concept for those cases in which an end-
point is defined in a relative way to another endpoint. This particular situation
is not taken into account in the WoT Working Group specification (at least at
the moment of writing this document).

The VICINITY Adapters ontology has been developed to extend domain
devices and specific properties being observed or acted upon by such devices, by
specialising the classes core:Device and ssn:Property.

3 Register

The register phase in VICINITY is used to acknowledge in the platform the
existence of one or more IoT infrastructures. The bottom line is to provide a
wide description of useful contextual data related to these infrastructures.

The registering task relies on several VICINITY components: the Gateway
API uses some provided credentials to connect to the VICINITY cloud, the
Semantic Repository is a cloud component that stores all the contextual infor-
mation of IoT infrastructures registered in VICINITY.

For registering IoT infrastructures in VICINITY, first, a user submits one
Thing Description (TD) per IoT infrastructure; these Thing Descriptions are
RDF documents describing the contextual data, and the WoT mappings related
to such IoT infrastructures. Second, the user’s Gateway API sends the Thing
Descriptions to the Semantic Repository through a P2P network, using the user’s
credentials. As a result, the IoT infrastructures contextual data are stored in the
semantic repository and are available to answer a given SPARQL query.

4 Discovery

To achieve interoperability as a service users just have to perform SPARQL
queries. Nevertheless, instead of crawling all the IoT registered platforms we
aim at discovering only the suitable ones that meet some query restriction.

Figure 1 shows how discovery is implemented. First an user sends to the
Gateway API a SPARQL query. This component forwards the query to the cloud

4 Cimmino et al.

Gateway API

Node

….

Gateway API

Adapter A

VICINITY Node

Distributed Query Client

Adapter B
 Adapter C

1
Query

SPARQL

Node

….

Gateway API

Thanks to the discovery
process the client knows
the addresses of semantic
Things, from which is able
to extract the Gateway
APIs that expose the
relevant data to answer
the query

Gateway API Services

1

P2P Network

Requests data
exposed from
remote Gateway
APIs

3.2

2.1

The Distributed Query
Client transforms JSON
responses into RDF on
the fly relying on the
Thing Descriptions and
the Query Plan retrieved
during the discovery

JSON

JSON

2.2

3.1

Query

Answer

4

Gateway API

Adapter A

VICINITY Node

Distributed Query Client

Adapter B
 Adapter C

TDA
 TDB
 TDC

Semantic Repository

TDD

Gateway API Services

Contains discovered Things from the Semantic
Repository that are suitable to answer the input
query, i.e., pointers on how consume and query
Gateway APIs containing relevant data.

1

3

P2P Network

Query

SPARQL

TED
 4

TED generated by retrieving
Things and Thing Descriptions
from the Semantic Repository
Query

SPARQL

2

VICINITY
Ontology

TED references the
VICINITY Ontology

TDB
 TDC

Semantic Repository

P2P Network

Gateway API

Adapter A

VICINITY Node

Adapter B
 Adapter C

TDD

TDA

For each IoT infrastructure
an user submits a Thing
Description to the Gateway
API

Gateway API registers the
submitted TD provided in
the Semantic Repository

TDE

TDE

2

Fig. 1. Discovery of distributed things

component Gateway API that implements our discovery algorithm, which given
a query and relying on the Thing Descriptions stored in the semantic repository is
able to find the infrastructures that meet the requirements encoded in the query.
As a result, the Gateway API Services returns a Thing Ecosystem Description
(TED) that contains the contextual data of the relevant IoT infrastructures, as
well as, their web endpoints, and their WoT-mappings; i.e., a set of suitable TD
to answer the given query.

5 Access

The approach to answer SPARQL queries that require accessing multiple IoT
infrastructures and translating their JSON data into RDF, producing a trans-
parent view of both contextual and JSON data, is presented in Figure 2.

First, the Gateway API must retrieve a TED; as explained in the previous
section to know which Gateway API actually expose relevant data. Then, using
the TED it fetches the different relevant JSON documents from the Web end-
points specified in the TD within the TED; the JSON provided by each Gateway
API are the result of fetching their local Adapters who forward and adapt the
data of the IoT infrastructures. Following, it translates the JSON documents
into RDF using the WoT-mappings specified in the TED as well. And finally,
it combines the translated data and the contextual data contained in the TED,
producing a transparent view. As a result, the SPARQL query is solved over the
produced RDF data.

6 Discussion

Our lessons learnt after implementing VICINITY relying on the WoT ontology
are the following ones.

Towards Semantic Interoperability in WoT Ecosystems 5

Gateway API

Node

….

Gateway API

Adapter A

VICINITY Node

Distributed Query Client

Adapter B
 Adapter C

1
Query

SPARQL

Node

….

Gateway API

Thanks to the discovery
process the client knows
the addresses of semantic
Things, from which is able
to extract the Gateway
APIs that expose the
relevant data to answer
the query

Gateway API Services

2

P2P Network

Requests data
exposed from
remote Gateway
APIs

4.2

3.1

The Distributed Query
Client transforms JSON
responses into RDF on
the fly relying on the
Thing Descriptions and
the Query Plan retrieved
during the discovery

JSON

JSON

3.2

4.1

Query

Answer

5

Gateway API

Adapter A

VICINITY Node

Distributed Query Client

Adapter B
 Adapter C

TDA
 TDB
 TDC

Semantic Repository

TDD

Gateway API Services

Query

SPARQL

Contains discovered
identifiers of Things
from the Semantic
Repository suitable to
answer the input query

1

2

2.1

P2P Network

Query

SPARQL

TED
 3

TED generated by retrieving
Things and Thing Descriptions
from the Semantic Repository

Query
Plan

Query

SPARQL

4

5

Contains pointers on how
consume and query Gateway
APIs containing relevant data
for the query

VICINITY
Ontology
4.1

Generates the Query
Plan relying on the
VICINITY Ontology

TDB
 TDC

Semantic Repository

P2P Network

Gateway API

Adapter A

VICINITY Node

Adapter B
 Adapter C

TDD

TDA

For each IoT infrastructure
an user submits a Thing
Description to the Gateway
API

Gateway API registers the
submitted TD provided in
the Semantic Repository

TDE

TDE

2

Fig. 2. Access to distributed things

First, solutions implemented relying on the WoT ontology are forced to use
third-party ontologies to enhance WoT descriptions with contextual data. There-
fore, guides, recommendations, or even a domain-based discovery mechanism of
such ontologies would turn in a really handful set of resources.

Second, the WoT ontology describes how data is accessed and its model, but
does not actually exposes any value through a predicate. Therefore in our imple-
mentation, we extended the wot:interactionPattern with the predicate core:has-
Value so it could expose the fetched values from its endpoint in the description.

Third, IoT infrastructures described with WoT may not expose data in RDF,
actually it seems that most of the data endpoints are likely to expose JSON. This
hinders the chance of combining the WoT description with the contextual and
fetched data, if they are not in RDF. We solved this matter by developing the
WoT-mapping ontology, a software that translates on the fly the data into RDF,
and by combining all this data: descriptions, contextual, and translated data.

Forth, during the implementation of VICINITY we struggle to work with
WoT and endpoints that expose historical data. We solved this issue by creating
Services that expose such kind of data. Nevertheless, we are currently working
on closing the gap between the WoT ontology and the historical data.

Finally, regarding our implementation on VICINITY one of its drawbacks is
that requires the centralisation of some components. We are currently working
on a decentralised version of VICINITY that preserves our interoperability ap-
proach, and which keeps the privacy into account relying on decentralised ACL
mechanisms.

