
Simulation based validation of a Smart Energy Use
Case with Homomorphic Encryption

Johannes Kölsch, Christopher Heinz, Axel Ratzke, Christoph Grimm
Chair ”Design of Cyber-physical Systems”

TU Kaiserslautern
Kaiserslautern, Germany

koelsch|heinz|ratzke|grimm@cs.uni-kl.de

Gomathi Nandagopal
Vel Tech Rangarajan Dr. Sagunthala

R&D Institute of Science and Technology
Chennai, India

gomathinandhagopal@gmail.com

Abstract—IoT systems consist of HW/SW systems (e.g. sensors)
that are embedded in a physical world, networked and that
interact with complex software platforms. The validation of
such systems is a challenge and currently mostly done by
prototypes. This paper gives an overview of an approach for
the simulation- and emulation-based validation for large and
complex IoT systems. The validation is supported by a simulation
framework that also permits interaction with online-software, e.g.
an IoT platform (emulation). The framework is demonstrated by
a comprehensive case study. The example consists of the complete
IoT ”Smart Energy” use case with focus on data privacy by
homomorphic encryption.

Index Terms—Simulation, IoT, Homomorphic encryption,
Smart grid, Validation

I. INTRODUCTION

Nowadays, the number of applications in which IoT net-
works are deployed grows rapidly. These infrastructures oper-
ate in different domains such as smart cities, energy, eHealth,
and transportation and behave like isolated islands in the
global IoT ecosystem [1]. Their secure interconnection is a
big challenge that still needs to be resolved. One promising
approach towards interoperability of IoT networks across
different domains is proposed by the VICINITY project.
The project is supported by European Union Horizon 2020
program with the duration of 4 years (Jan. 2016 - Dec. 2019)
and the consortium of 15 partners from 7 different countries.
In this paper we present a simulation framework to validate the
security of an smart energy use case, which is enabled by using
homomorphic encryption. The performance of the overall IoT
ecosystem is evaluated with and without using the additional
homomorphic encryption layer. The real micro-service for the
encryption is integrated into the simulation as hardware in the
loop with the approach presented in [2].

A. The VICINITY project

The goal of the VICINITY project is to develop a platform
that connects isolated IoT infrastructures into one global
ecosystem called virtual neighborhood where users can select
to which other systems their smart objects should be connected
in a peer-to-peer network. The platform automatically supports

As a part of the VICINITY project, this work has been supported by
EU (European Union) program Horizon 2020 under grant agreement number
688467.

interoperability from technical up to semantic level. The se-
mantic interoperability of smart objects coming from different
operators and using different standards is enabled with the
semantic model integrated into the VICINITY platform [3].

The VICINITY architecture offering interoperability ”as a
service” is shown in Figure 1. It is based on a decentralized,
bottom-up and cross-domain approach that resembles a social
network, where users can configure their setups, integrate
standards according to the services they want to use and fully
control their desired level of privacy in a P2P (peer-to-peer)
network.

Fig. 1. High-level VICINITY architecture [4]

At end of the project VICINITY’s approach will be demon-
strated on four pilot sites coming from the following different
domains: energy, building automation, health, and transport.
VICINITY’s potential to create new, cross-domain services
will be demonstrated by value added services, such as micro-
trading of demand-side management capabilities, AI-driven
optimization of smart urban districts and business intelligence
over IoT.

The focus of the work presented in this paper is to build
a virtual environment for simulation and validation of IoT
infrastructures and their use cases in real life scenarios before
their real deployment. Here, a smart energy use case at one
of the VICINITY pilot sites, located in Tromsø, Norway, will
be used for demonstration.

B. Homomorphic encryption

VICINITY’s architecture offers privacy built-in by design,
as only metadata on the connected devices is stored in a
central cloud. Sensitive information like e.g. sensor readings
are transmitted peer-to-peer only from the data producer to its
intended consumer. Additionally, this needs to be approved
by the data owner in advance and on an individual basis.
Still, once the data owner has given his consent, his data
is given out and will be available to potentially malicious
third parties, which may seem trustworthy at first glance.
As Value-Added Services (VAS) are the key to making the
whole IoT ”smart”, a user may be tempted to share his data
with such a service, even though he would rather not give
out his information. An even better approach would be, to
never give away any sensitive data (in clear text), yet still
allowing the VAS to work. What may sound contradicting
is exactly what is possible with the use of homomorphic
encryption (HE) Schemes. Homomorphic encryption enables
certain calculations, or in the case of fully homomorphic
encryption, any arbitrary function to be executed on encrypted
ciphertexts without the need to decrypt this data first! Partially
homomorphic encryption has been subject to research for quite
some time, only enabling a limited number of operations to
be executed. With the introduction of a fully homomorphic
encryption Scheme by Craig Gentry in 2009 [5] [6], any
arbitrary computation is now possible on ciphertexts with no
need to decrypt and giving out any cleartext information at all.
However, fully homomorphic encryption is more expensive in
terms of computational demand, so people need to decide on
a trade-off between performance and versatility. As we will
demonstrate in Chapter V-D, using our Framework enables
us to evaluate different options in a realistic but controlled
environment.

II. STATE OF THE ART

The size of the IoT market today is growing at enormous
speed and will continue to do so. The number of connected
devices has already exceeded the worlds human population [7].
In such complex IoT networks simulation plays an important
role for the early-phase validation before their deployments in
the real-life world.

[8] proposes the agent-driven Smart Shire (S3) simulator
that supports large-scale simulations with different communi-
cation mechanisms such as TCP/IP, MPI and shared memory.
In [9] the authors extend Smart Shire towards IoT for the
multi-level cross-domain simulation where the agent-driven S3

simulator [8] is used for modeling objects and services at the
higher level and the discrete-event OMNeT++ simulator1 for
modeling communication between objects at the lower level.
After a number of experiments, they came to the conclusion
that the simulation performance degrades as the number of
entities simulated at the lower level with OMNeT++ increases.

To deal with this problem, [10] proposes an approach based
on parallel and distributed simulation (PADS). The approach

1https://www.omnetpp.org

in [10] is based on the use of a hybrid simulator at the lower
level where OMNeT++ is combined with the Matlab/Simulink-
based simulator ADVISOR and works with it in succession.
However, this approach does not provide solutions for general
problems of the PADS simulation, such as lack of interop-
erability among simulators and lack of approaches for the
automatic deployment and management of simulators on the
distributed infrastructure.

Another hybrid simulation approach was proposed by [11]
and [12]. [11] replaces the agent-based simulator S3 with the
Agent-based COoperating Smart Object (ACOSO) simulator
for modeling smart objects in IoT networks. [12] presents
the general-purpose hybrid simulation platform that supports
simulation of interconnected IoT devices characterizing them
by mobility, communication, and energy models.

III. SIMULATION OF IOT NETWORKS

As powerful as it is, the discrete-event network simulation
framework Omnet++ has it’s fair share of problems, when
tasked to simulate the entirety of a smart city. One of these is
the performance loss when simulating the work of and commu-
nication between the number of models that are necessary for
the simulation of an entire city. However, with the possibility
to simulate such a smart city, not only single applications but
the entirety of the complex interactions between them could
be simulated and used to further facilitate concepts of smart
cities and the Internet of Things.

Therefore this work aims to integrate the powerful Omnet++
framework for its capabilities of simulating network traffic and
more important as a base for INET to simulate the Internet,
with a lightweight custom Simulation framework, to reduce
performance problems of Omnet++. To achieve this goal, the
possibilities of the hierarchical modeling of DEVS models are
used, to define a ”time hierarchy” within the simulation. The
idea here is, to dynamically switch between models that sim-
plify significant portions of the simulated city (e.g. a quarter or
district of the city) with fairly rough-grained time resolution,
and coupled networks of models, that model smaller parts
of the aforementioned models with increasingly finer grained
time resolution. This allows us to reduce unimportant parts
of a simulated city to resource saving rougher abstractions
and dynamically observe important details, where they are of
interest.

This paper brings the following novelties over state of
the art: The proposed simulation framework supports multi-
level simulation using only one simulation technique based
on discrete-event simulation. The framework allows dynamic
switching between models at different levels of abstraction that
simplify significant portions of a simulated IoT network with
fairly rough-grained time resolution. This further allows us to
dynamically observe details that are relevant and filter ones
that are not of interest for a particular simulation scenario.

A. Concept

As stated in chapter I, the aim of this paper is to create
a general purpose DEVS simulator with hybrid simulation

capabilities. for large scale IoT and Smart City simulations
within the VICINITY use cases. Based on the requirements
for general IoT simulations as well as requirements unique to
the VICINITY project which are presented in section III-B, an
approach to the problem is devised in the following sections.

B. Requirements

From the various works on the subject which were presented
in section II, the most prevailing requirements for a simulator
of the IoT have been gathered. Additionally, some require-
ments have arisen of the involvement of the Chair Design of
Cyber-physical Systems with the VICINITY project. Those
requirements will be examined in the following:

• possibility to simulate thousands of interconnected de-
vices [8]: Depending on the scenario, it can be necessary
to simulate thousands of entities that partake in the IoT.
While for example in the simulation of a smart home,
there are only a relatively small few devices that need to
be simulated, during the simulation of a new area wide
service, the number of simulated entities has to rise rather
quickly, to provide useful data.

• ability to run in (almost) real-time for proactive ap-
proaches: While high detailed simulation runs can pro-
vide insight into the fine-grained processes within the
interplay of different devices and technologies, with the
sheer size of Internet of Things scenarios in the context
of a smart city, these simulation runs tend to be too slow
in order to enable proactive approaches. The framework
under development should provide some techniques to
enable these approaches.

• hardware in the loop capabilities: In order to analyze
the behaviour of prototypes, it would be most beneficial
if the developed simulation framework would provide
hardware in the loop simulation capabilities or provide
the interfaces to enable simple integration of already
existing approaches.

• arising from the first two: high scalability of scenarios:
Somehow connected to the first two requirements is the
high scalability of scenarios. The simulation framework’s
real-time capabilities should not be lost, when thousands
of entities that communicate with each other need to be
simulated on a large scale.

• possibility to employ parallel and distributed simulations:
Based on the observations in [10], the developed frame-
work should provide either out of the box parallel and
distributed capabilities, or at least be built in a way, that
facilitates later adaption of these principles to further
support the aforementioned requirements.

• fast model development for fast employment in use
cases: In order to be employed in the VICINITY project,
the developed framework should offer possibilities that
support rapid model development and possibly even the
use of functional mock-up interfaces.

• possibility to unify multiple heterogeneous technologies
on all levels of IoT: The simulator should support mod-

elling the prevalent technologies of the respective domain
and enable the interplay between them.

• possibility to integrate further domain specific simulators
into the framework: This last requirement pretty much
speaks for itself. If during the deployment of the devel-
oped simulation framework the necessity of integrating
further domain specific simulators arises it should be
doable with little effort.

IV. APPROACH

Discrete event systems have been topic of research for
over 40 years now, so techniques for parallel and distributed
simulation are well-known and there exist multiple extensions
to the original specification for various problems and fields
of application, such as PDEVS, DynDEVS (which enables
dynamically changing connections within DEVS [13]) and
many more. Also modelling techniques for discrete event
simulations are well known. Due to their relationship to finite
state automata easy to grasp for unexperienced developers.
For that reason, this approach uses the DEVS specification as
foundation.

The majority of the examined related work identified the
scalability as crucial for large scale simulations. Thus, the
main focus of this work is to introduce a simulation framework
for large-scale IoT simulations together with a modelling
technique to enable rapid modelling of large-scale use cases.

Rather than combining different domain specific simulators
to a multi-level simulation that invokes different simulators at
different points in time during the simulation, this approach
aims at dynamically altering the advancement of time and the
models’ level of detail during the simulation. This means that
in order to allow high scalability even in large scale scenarios,
the proposed framework simulates areas that are of no interest
for the user with far less detail and bigger steps in time ad-
vancement. Specifically, the framework uses multiple models
with different degrees of detail and time advancement for the
same simulated entity and changes between them during the
simulation, depending on the interest of the modeller. A real-
world comparison could be imagined as a magnifying glass,
that shows its focal point in great detail, while the everything
else stays the same. This enables simulations of large-scale
scenarios like the introduction of a new service in the area
of a whole smart city, for example, where at the same time
one can study the relationships between simulated entities all
over the area, as well as detailed processes in single simulated
entities or hardware in the loop.

Similarly to the multi-level simulations which were dis-
cussed in chapter II, this approach uses multiple levels of detail
to simulate the desired scenarios. But rather than implementing
the different levels through different domain-specific simula-
tors, here, the levels in the hierarchy of the simulation are
defined by the degree of time advancement and detail in the
used models. This means of course additional costs in terms
of modelling, since different models with varying degree of
detail for the same system have to be developed, but through
the re-usability of the used models, this is a one time cost.

In practice, the use and substitution of models during
simulation runs is achieved by a switch between a low detail
atomic DEVS model and a whole network DEVS model, that
models the atomic model in more detail with finer grained time
advance steps, and thus creating a new level of simulation.
Hence, a good balance between models of areas that are of
special interest and models that provide only the necessary
background should efficiently lower the amount of produced
events by the simulation. Besides, when the coarse and finer
grained models are placed inside partitions together, already
well-used PADS techniques for discrete event simulators can
be applied. Of course, such lower levels could be represented
through domain specific simulators as in the approaches shown
in section II. For that reason, in this framework OMNeT++
with its INET expansion is used to implement the more
detailed lower level models of smart things and their interplay.

A. Level Hierarchy and Structure

1) Expanding DEVS: To define the proposed approach
in terms of the DEVS specification, a new kind of model
is introduced. For the rest of this paper it will be called
Hierarchical Atomic. It is a combination of an atomic and
a network DEVS model that additionally provides functions
to transfer one model’s state into another and to select, which
one should be the currently active:

hatomic ≡ 〈atomic, network, {transport}, select〉, (1)

where atomic and network are the contained atomic and
network DEVS model respectively. {transport} is the set of
transport functions, that transfer the models’ state and select
is the function that chooses the currently active model. More
detailed, the new type of model - in the following called
Hierarchical Atomic - is defined:

hatomic ≡ 〈SA, XA, XN , YA, YN ,

D, {MN}, {IN}, {ZN}, δint, δext, δcon,
λ, ta, select, {transport}〉,

(2)

where A and N denote if the component belongs to the
atomic or the network part of the combined model respectively.
The transport functions

transportA→N : SA → S ⊂ ∪iSi ∈ D, forSi ∈ Di (3)

and

transportN→A : S ⊂ ∪iSi ∈ D → SA, forSi ∈ Di (4)

denote the functions that are necessary to transport the states
of the contained models between each other, when a new
level in the simulation is opened respectively closed. Note
that neither of the functions has to be an isomorphism, since
the contained network should be of course more expressive
than the contained atomic. As a consequence, only a subset of
possible states of the network models’ components is used.

In more detail, the different contained models define the
boundaries of the levels of a multi-level simulation: The encap-
sulated atomic DEVS model is one the same level as the new
defined model, while the encapsulated network DEVS model
belongs to the simulation level below. This way, the transport
functions mark the transition between levels. Emanating from
the top-level model in the simulation, all networks that are
the same amount of encapsulation away from this root belong
to the same level. This should be taken into account when
developing models for a given scenario: When the different
network models that define a level differ too much in terms
of their step size in time advance, the use of that level for
performance gain can degrade. I.e. when one of the network
models that belong to that level would advance in time in much
smaller steps than the rest, it would impact their efficiency as
well.

B. Model reuse and the model tree

The organization in atomic and network DEVS models
and the closure under coupling characteristic of DEVS allow
for easy (re-)arrangement of model building blocks to more
advanced and complex models in a tree-like structure. This
procedure is supported by the here proposed approach. As can
be seen in figure 2, the here introduced model that contains
parts of the level architecture can easily be treated just as
plain atomic DEVS model that is part of a network model in
all positions in the tree structure. Moreover, the atomic models
that belong to the contained network model can be exchanged
with the new model as well, thus forming the different levels
of hierarchy within the level of detail and time advancement
of the simulation.

The consequences of this also tree-like organization of the
simulation’s levels are of importance for the general approach
to modelling with the proposed simulator and influence the
possible parallelization of the sequential approach.

First, regarding the approach to modelling, a bottom-up
procedure is recommended, where the deepest and most
detailed level is designed in its whole and then partitioned
into smaller leaves of the tree. As the performance gain of
the dynamic exchange between models with varying level of
detail is dependent on the specific scenario, it is possible
that more efficient partitions of models along the tree are
only eventually evaluated under simulation. The bottom-up
construction here ensures that the main part of the scenario
has to be developed only once and then merely has to be
partitioned accordingly. Also, if the models that are to be
exchanged are the kind of whole protocol-stacks or space-
divided parts of the environment, they in turn can be heavily be
reused. If the capabilities of exchanging models with more or
less elaborated representations of the system under simulation
are used efficiently, in this way, the environment of smart home
scenarios could be simulated following a user of a service
through his way through a smart city, exchanging models on
the fly, as soon as they are needed. In the implementation of the
proposed approach, it is of importance where in this tree the
integrated domain specific simulators are placed. Obviously,

Fig. 2. The model tree and organization of hierarchy levels

a placement along the nodes of the tree as well as a simple
hierarchy of one domain specific simulation kernel per level
is conceivable.

Second, regarding possible partitioning techniques that
could be used in a parallelized employment, it has to be taken
into consideration how the different networks are placed. A
high density of encapsulated networks in unluckily partitioned
models could negatively affect the simulations performance.
Therefore, modelling for a parallel scenario could be prolon-
gated in comparison to other approaches.

During the implementation of the here proposed simulator, it
was decided to place multiple instances of a simulator across
the tree. The placement of simulators inside the introduced
hierarchical atomics allowed them a more flexible implemen-
tation of their functionality. At the same time, it is ensured
that the simulator that advances a specific model and the model
itself remains separated. Furthermore as this approach is meant
to exchange models on various levels of the tree at the same
time, a placement of a single instance of a domain specific
per level would prove impractical since several models along
the whole simulation would be thwarted through a bottleneck.

C. Synchronization

Whenever an atomic model gets interchanged with a net-
work model and vice versa, synchronization errors can occur.
This is the result of already scheduled autonomous events, that
now may become invalid. Looking at the mode of operation
of the implemented abstract simulator, one can see that
subsequently to an autonomous event the imminent model gets

rescheduled with its time advance function. This little detail
can be used to save complicated synchronization procedures:
If the exchange of models can only occur during events,
the subsequent rescheduling of the containing model will
minimize the chance of falsely scheduled models.

However, depending on the concrete implementation of the
FES, perhaps there are still internal events scheduled that are
now too early or too late. For example, when the simulator
switches from a detailed, slower advancing network model to
the respective atomic one, it can happen that internal events
of one of the network’s faster advancing components are
still inside the FES. The easiest solution to this is of course
a future event schedule, that keeps at most one event of
every atomic model inside itself. Through the encapsulation
of the network model inside what looks like an atomic DEVS
model and the immediate rescheduling after execution of the
internal event, the model would be scheduled correctly. But
in practise, this not always possible that easy. Different areas
of application can demand for different scheduling strategies
and the possibility exists that not all of them can respect the
requirements of this approach. OMNeT++ already is designed
with several possible scheduling classes. To maintain maximal
flexibility of the proposed approach it is therefore necessary
to answer the problem directly. Thus, the proposed new kind
of model has to keep track of its own schedule on its own
and decide on how to react to a falsely scheduled autonomous
event independently. While models can keep track of their
own model time through their time advance function and
the fact that they get informed about the elapsed time since

the last internal event (which supposedly followed a correct
time advance of the model), when the occurrence of internal
events loses reliability, this is not sufficient anymore. Hence
the model needs the ability to acquire the global simulation
time. This can be achieved by, for example allowing the single
models to access the simulation environment or the simulation
kernel like OMNeT++ does, or it can be accomplished by
providing the global simulation time to the model with every
function call to one of the state transition functions or the
output function.

V. CASE STUDY: SMART ENERGY USE CASE

To illustrate the applicability and performance of the de-
veloped multi-level simulator, we modeled and simulated a
smart energy use case with applied homomorphic encryption.
This use case is an extension of the use case from [14]. This
particular use case describes a smart energy scenario within
a city. The city has a photovoltaic system and a windmill as
power suppliers and a parking lot and a couple of houses as
consumers. Electric vehicles can move inside the city and the
parking lot. By using a smart parking service through a mobile
app, users of the system can request to reserve their parking
slot of choice within the participating parking facilities. The
availability of the parking slots is then displayed through the
mobile app as well as through the optical indicators located
on the respective parking slots for random people, that do not
participate in the smart parking service.

The described scenario has been modeled and simulated
using the proposed approach at three distinct levels of abstrac-
tion: The first two higher levels have been implemented only
using classes provided by the implemented core simulator. The
third (lowest) level has been implemented with OMNeT++
5.4.12 and its INET extension 4.0 3.

A. The highest abstraction level - Level 0

The highest level of abstraction models abstract processes
that are needed to provide basic information for the following
lower levels of the simulation scenario. Furthermore the power
generating entities are modeled on this high and abstract level.
This is shown in Figure 3.

The CarGenerator atomic model acts as a source to the
rest of the modules and provides the information needed to
simulate users and random cars at the lower abstraction levels.
This information is then passed to the CarProcessor.

The CarProcessor then determines if the received informa-
tion is used to simulate a scenario with a random visitor of the
parking facility or with a user of the smart parking mobile app.
In the latter case, information about the desired parking slot
is generated and used in an attempt to make a reservation via
the model of the smart parking app. If this reservation fails,
the information of the app user is treated like information
about a random visitor of the facility and sent further to the
ParkingFacility.

2https://www.omnetpp.org/21-articles/3752-omnet-5-4-1-released
3https://inet.omnetpp.org/2018-06-28-INET-4.0.0-released.html

Fig. 3. Smart Energy use case: Level 0

Once entering the ParkingFacility model, the received in-
formation is used to model the abstract behavior of both
random visitors and smart parking service users competing
for available parking slots, parking and subsequently leaving
the facility again.

Users of the app that succeed with a reservation will directly
target their desired parking slots while random arrivals and
users that failed to reserve their desired slot will choose the
first free available parking slot. When arriving at the slot, it
will be determined if it is still free or in the meantime has
already been reserved by a user or taken by another random
car that arrived first. If it has already been taken, they will
head for the first free parking opportunity again. If they do
not succeed in finding one, the car will leave the parking
facility. If the parking process succeeds, the car will occupy
the chosen parking slot for a while and then subsequently leave
the parking facility again.

B. The middle abstraction level - Level 1

The following level of abstraction has been used to further
detail the processes inside the ParkingFacility. It is shown in
Figure 4. It divides the raw ParkingFacility into three different
parking decks that internally mimic the behavior of the parking
facility in Tromsø.

The information about car arrivals will be forwarded to
the different parking decks in sequence; When entering the
facility, the parking decks have to be traversed until the desired
parking spot is reached. When a car leaves the ParkingFacility,
the decks have to be traversed again in order to reach the
exit. Additionally, the ParkingDeckControl is used to send
information from and to the model of the app.

Fig. 4. Smart Energy use case: Level 1 - the Parking Facility

C. The lowest abstraction level - Level 2

The lowest level of the simulation scenario has been mod-
eled with OMNeT++ 5.4.1 and INET 4.0. Here, the informa-
tion produced by the higher levels described above is used to
dynamically instantiate simulated entities and to represent the
communication between sensors, actuators, and the app with
the advanced capabilities of INET.

At this level, the parking facility has been modeled as an
OMNeT++ compound module and the single parking decks
as submodules of it. Although the different submodules can
interact with each other across submodule boundaries, only
the ones which are associated with the respective active higher
level parts of the simulation will be actually active.

If the higher level parking deck model switches to the
respective part of the OMNeT++ module at Level 2, cars
will be created as mobile nodes with specific characteristics.
The characteristics depend on the information generated at
the levels above and the cars behavior is determined by the
corresponding states at Level 1. Depending on if a car is now
in the phase of searching for a parking slot or if it is already
parked or even leaving the parking deck, the wireless node
will be created and its goals will be set accordingly. One such
parking deck modeled in OMNeT++ can be found in Figure
5.

Every Car has a battery, that is discharging as long as the
car is moving inside the environment. When a car is parked
inside the parking facility its accumulator is charged. When it
is fully charged, it stops charging and the car is ready to drive
away.

D. Integration of the homomorphic encryption micro-service

As briefly discussed in Section I-B, homomorphic en-
cryption is particularly useful, when data is supposed to be
processed by a third party, which cannot fully be trusted. One
Example could be a value-added service by someone else. If a
user is expecting some particular benefits or is even forced into
using it, keeping his sensitive data private is a major concern.

Fig. 5. Smart energy use case: Omnet++ Model of Parking Deck at Level 2

Fig. 6. Use Case integrated into the VICINITY network. Private data is
available to value-added service in clear text.

Missing trust can potentially even be a showstopper for the
whole Internet of Things.
Homomorphic encryption can help us with the above men-
tioned privacy concerns. However, this privacy comes at
the price of increased computational effort for encryption,
decryption and also functions evaluated on ciphertexts are
more costly in terms of computational demand. Currently, the
VICINITY project (see section I-A) is investigating the use of
homomorphic encryption for these scenarios. To evaluate its
practical feasibility, the computational overhead introduced by
the use of homomorphic encryption needs to be analyzed. As
there are numerous potential encryption schemes, which offer
homomorphic properties, it is also important to evaluate them.
To this end, we will simulate one of VICINITYs use cases
both with and without the use of homomorphic encryption as
to calculate the overhead this introduces under Lab conditions.
Our Lab Setup utilizes Hardware-in-the-Loop simulations of
the VICINITY infrastructure and can be adjusted way quicker
and cheaper than an actual re-deployment on site. Figures 6
and 7 visualize the two simulated use cases:

As shown in Figure 6, Energy Consumption Data of the sim-
ulated cars is gathered and transmitted to the operators’ value-
added service. The operator is only interested in the overall
energy consumption of its whole fleet and so it calculates the
sum over all inputs first. As the energy consumption allows
to draw some conclusion about the owners behaviour, we will
consider this data as private data and also wish to keep this
data private and not share if with any third-party.
As neither the operator, nor the users themselves have any
particular interest in sharing their individual, private data, we

Fig. 7. Homomorphic encryption micro-service applied to Use Case

Fig. 8. Runtime of the simulation with and without homomorphic encryption

introduce the homomorphic encryption micro-service. It is
integrated into the VICINITY dataflow as shown in Figure 7:
Input Data (e.g. the Energy Consumption of each car) is
encrypted using the Brakerski-Gentry-Vaikuntanathan (BGV)
scheme, which is a fully homomorphic encryption scheme.
The encrypted payload is then transmitted through the VICIN-
ITY peer-to-peer network and to the operators value-added
service again. The homomorphic encryption micro-service
performs the addition on the encrypted inputs, followed by
a decentralized decryption on the aggregated data. This way,
only the anonymized, aggregated data is visible and handed
over to the value-added service in the first place.

VI. CONCLUSION

In order to evaluate the overhead introduced into the
dataflow, due to the homomorphic encryption, we have evalu-
ated two scenarios, with and without homomorphic encryption
in order to compare their runtimes. As a starting point, the
HElib Library [15] was used to implement the micro-service
for homomorphic encryption. More encryption schemes will
be evaluated and compared using the simulation framework
presented in this paper.

A. Experimental Setup

The simulations were performed on a Mac Pro with a 3.5
GHz 6-Core Intel Xeon E5 CPU, 16 GB 1866 MHz DDR3
RAM, AMD FirePro D500 3072 MB GPU on MacOS High
Sierra.

B. Results

As can be seen in figure 8, the runtime results of different
simulation runs increase with an increasing number of cars
which participated in the described VAS. This can be explained
by the rising computational cost of simulating the necessary
communications between the VAS participants. The increase
of runtime of the simulation scenario which uses homomorphic
encryption compared to the scenario without it, stems from
two separate causes: First the pure computational cost on the
service side for the encryption. And second the time necessary
to send the huge (in comparison to unencrypted data) response
ciphers into the simulated network.

Striking is the perceived difference in the growth rates of
runtimes of both simulation scenarios: The growth of runtime

of the scenario with homomorphic encryption is far less than
without homomorphic encryption. This is probably due to the
limits of the used realtime scheduler used for the hardware
in the loop. With too many communications into a real
network, the used scheduler has to drop some in- or out going
communications in order to keep its realtime capabilities. In
further experiments, different implementations of schedulers
with realtime capabilities have to be evaluated.

REFERENCES

[1] A. Mynzhasova, C. Radojicic, C. Heinz, J. Kölsch, C. Grimm, J. Rico,
K. Dickerson, R. Garcı́a-Castro, and V. Oravec, “Drivers, standards and
platforms for the IoT: Towards a digital VICINITY,” in 2017 Intelligent
Systems Conference (IntelliSys), 9 2017, pp. 170–176.

[2] J. Kölsch, C. Heinz, S. Schumb, and C. Grimm, “Hardware-in-the-
loop simulation for Internet of Things scenarios,” in 2018 Workshop on
Modeling and Simulation of Cyber-Physical Energy Systems (MSCPES),
4 2018, pp. 1–6.

[3] R. Garcı́a Castro (leading author), “Vicinity d2.2: Detailed
specification of the semantic model,” UPM, Tech. Rep., 2017.
[Online]. Available: https://www.vicinity2020.eu/vicinity/sites/default/
files/documents/vicinity d2.2 vicinitysemanticmodel v1.0.pdf

[4] V. Oravec (leading author), “D1.6: VICINITY Architectural Design,”
BVR, Tech. Rep., 2017. [Online]. Available: https://www.vicinity2020.
eu/vicinity/content/d16-vicinityd16architecturaldesign10

[5] C. Gentry, “A fully homomorphic encryption scheme,” Ph.D. disserta-
tion, Stanford University, https://crypto.stanford.edu/craig, 2009.

[6] ——, “Computing arbitrary functions of encrypted data,” Commun.
ACM, vol. 53, no. 3, pp. 97–105, Mar. 2010.

[7] D. Evans, “The Internet of Things How the Next Evolution of the
Internet Is Changing Everything,” Cisco Internet Business Solutions
Group (IBSG), Tech. Rep., 2011. [Online]. Available: https://www.cisco.
com/c/dam/en us/about/ac79/docs/innov/IoT IBSG 0411FINAL.pdf

[8] S. Ferretti and G. D’Angelo, “Smart Shires: The Revenge of Country-
sides,” in Proceedings of the IEEE Symposium on Computers and Com-
munications, ser. ISCC ’16. Washington, DC, USA: IEEE Computer
Society, 2016.

[9] G. D’Angelo, S. Ferretti, and V. Ghini, “Multi-level Simulation of
Internet of Things on Smart Territories,” Simulation Modelling Practice
and Theory (SIMPAT), vol. 73, pp. 3–21, 2017. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1569190X16302507

[10] ——, “Distributed Hybrid Simulation of the Internet of Things and
Smart Territories,” To appear in Concurrency and Computation:
Practice and Experience, vol. 30, no. 9, 2018. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.4370

[11] G. Fortino, R. Gravina, W. Russo, and C. Savaglio, “Modeling and Simu-
lating Internet-of-Things Systems: A Hybrid Agent-Oriented Approach,”
Computing in Science Engineering, vol. 19, no. 5, pp. 68–76, 2017.

[12] G. Brambilla, M. Picone, S. Cirani, M. Amoretti, and F. Zanichelli,
“A Simulation Platform for Large-scale Internet of Things Scenarios
in Urban Environments,” in Proceedings of the First International
Conference on IoT in Urban Space, ser. URB-IOT ’14. Brussels,
Belgium: ICST (Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering), 2014, pp. 50–55. [Online].
Available: http://dx.doi.org/10.4108/icst.urb-iot.2014.257268

[13] G. A. Wainer, Discrete-event modeling and simulation: a practitioner’s
approach. CRC press, 2009.

[14] J. Kölsch, A. Ratzke, and C. Grimm, “Co-Simulating the Internet of
Things in a Smart Grid use case scenario,” in 2019 Workshop on
Modeling and Simulation of Cyber-Physical Energy Systems (MSCPES),
4 2019.

[15] S. Halevi and V. Shoup, “Helib - homomorphic-encryption library.”
[Online]. Available: https://github.com/shaih/HElib

