VICINITY 2020

INCANT: Integrate indoor positioning infrastructure in the Vicinity ecosystem

Grant agreement: 688467

Open virtual neighbourhood network to connect intelligent buildings and smart objects

Thinkinside provides ICT solutions that transform INDOOR LOCATION data into actionable analytics.

Thinkinside helps companies understand how **individuals and assets behave in physical spaces** and how to optimize their operations through a hyper-accurate localization infrastructure.

Real-time

Real-time monitoring and control of processes based on **indoor location** data.

Big Data

Cloud-based data processing pipeline able to handle vast amounts of data.

Pluggable

Integration with existing enterprise platforms and business intelligence frameworks.

Horizon 2020 European Union funding for Research & Innovation

Public

ThinkIN platform integrates with data from a large variety of Internet Connected Devices, such as:

- tags,
- wearables,
- smartphones,

with a hyper-accurate indoor localisation infrastructure

ThinkIn processes these data through its proprietary scalable data processing technology and provides:

- Visual analytics and KPIs
- Real-time services

Based on actual position, ThinkIN platform also provides:

- Push-notifications
- Delivery of contents
- Real-time alerts

VICUNITY INCANT: Integrate indoor positioning infrastructure in the Vicinity ecosystem

OBJECTIVES:

- To provide a VICINITY adapter for indoor location data
 - Supporting various localization technologies (e.g., BLE, WiFi)
 - Providing the enabling services for managing location-based support
 - Integrating with the VICINITY Neighborhood Manager
- To demonstrate the INCANT location-enablers in realistic scenarios (e.g., retail and warehouse)

We support any RTLS system providing high accuracy indoor location

- E.g., UWB, Bluetooth, LiFi
- Quuppa
 - Bluetooth Low Energy (BLE)
 - Track TAGs and Mobile devices
 - Based on the angle of arrival
 - Continous tracking over large areas
 - Sub-meter accuracy

Antenna

Horizon 2020 European Union funding for Research & Innovation TAG

Public

- Configuration
 - Mapping and zoning
 - Objects registration and annotation
 - Objects grouping
- Monitoring and control
 - RTLS health monitoring and control
 - TAGs battery monitoring
- Geo-fencing events management
 - Geo-fence creation
 - Business rules creation

"oid": "incant-thing-1", "name": "Trackable object in INCANT", "type": "adapters:TrackableObject", "properties": ["pid": "location", "monitors": "adapters: TrackableObject ", "read link": { "href": "/objects/{oid}/properties/{pid}", "output": { "type": "object", "field": ["name": "position". "schema": { "lat": "float". "long": "float", "precision": "float", "altitude": "float". "EnvironmentID": long. "timestamp": "long". "actions": []. "events": []

Properties:

- Timestamp: timestamp of the last registered position
- Environment ID: environment from which the coordinate was generated
- X: x coordinate of the Object
- Y: y coordinate of the Object

Depending on the specific scenario, coordinates can be expressed according to:

- A relative coordinate system. This will depend on the specific RTLS technology bein used and configuration
- Latitude / longitude coordinates

"pid": "battery", "monitors": "adapters:ObjectBattery", "read link": { "href": "/objects/{oid}/properties/{pid}", "output": { "type": "TrackableObjectBattery", "field": ["name": "acceleration", "schema": { "percentage": "float", "timestamp": "long" "actions": [], "events": []

Properties:

- Timestamp: timestamp of the last registered position
- Voltage: voltage of the TAG being used to track the object

"pid": "accelerometer", "monitors": "adapters:ObjectAcceleration", "read link": { "href": "/objects/{oid}/properties/{pid}", "output": { "type": "TrackableObjectAcceleration", "field": ["name": "acceleration". "schema": { "Xacc": "float". "Yacc": "float", "Zacc": "float", "timestamp": "long" "actions": [], "events": []

Properties:

- Timestamp: timestamp of the last registered position
- Xacc: acceleration over the x axis
- Ycc: acceleration over the x axis
- Zacc: acceleration over the x axis

